REDUCTION OF THE INFLUENCE OF DEVIATIONS OF GENERATOR PARAMETERS IN PRECISION QUADRATURE BRIDGES
ARTICLE_10_PDF (Українська)

Keywords

impedance
admittance
standard
quadrature bridge
error correction
iterative method імпеданс
адмітанс
еталон
квадратурний міст
корекція похибок
ітераційний метод

How to Cite

[1]
Борщев, П., Ламеко, О. and Мельник, В. 2024. REDUCTION OF THE INFLUENCE OF DEVIATIONS OF GENERATOR PARAMETERS IN PRECISION QUADRATURE BRIDGES. Tekhnichna Elektrodynamika. 1 (Jan. 2024), 077. DOI:https://doi.org/10.15407/techned2024.01.077.

Abstract

The article is devoted to solving the problem of attestation of electric capacity standards at industrial frequency. The expediency of using a quadrature bridge of alternating current to determine the parameters of standards of electric capacity at industrial frequency by comparison with the parameters of standards of active resistance was noted. The advantage of using a bridge imbalance indicator with high input impedance is shown, which consists in the possibility of reducing the influence of higher harmonics of the supply voltages. An analysis of the well-known method of reducing of measurement errors caused by the deviation of the generator parameters from the calculated ones was carried out. It is shown that the known method does not provide sufficient compensation for the influence of these errors when the deviations of the generator parameters increase, as well as when the deviations of the bridge from the balance state increase. An iterative algorithm for calculating the measured deviation of the impedance ratio of the compared standards from the nominal value is proposed. Mathematical expressions for calculating the measured quantity are given. Calculations of the components of the measurement error for different values of generator voltage deviations were carried out. Calculations were performed for two variants of generator voltage variation implementation: multiplicative voltage amplitude variation and additive voltage phase variation. The developed iterative correction method allows to reduce the specified errors to the required levels in a small number of iteration steps - in the vast majority of cases, two steps are enough. The application of the method allows obtaining high metrological characteristics with rather large deviations of the voltage ratio of bridge generators, which makes it possible to reduce hardware costs when implementing quadrature alternating current bridges for comparing capacitance and active resistance standards. References 18, figure 1, table 1.

https://doi.org/10.15407/techned2024.01.077
ARTICLE_10_PDF (Українська)

References

Norms of electrical equipment testing. SOU-Н ЕЕ 20.302:2020. Ministry of Energy and Environmental Protection of Ukraine. PAT Matsionalna energetychna kompania Ukrenergo, 2020. 238 p. (Ukr)

Mosty peremennogo toka vysokovoltnye avtomaticheskie SA7100. Rukovodstvo po ekspluatatsii. Kyiv: OOO Oltest, 2020. 132 p. URL: https://oltest.com.ua/wp-content/uploads/2021/08/10-KE-CA7100-ua.pdf (accessed at 05.08.2023). (Rus)

Tangens 3М. Avtomaticheskaia ustanovka dlia izmerenia tangensa ugla dielektricheskikh poter izolatsionnogo masla. Kharakteristiki. OOO Kharkovenergopribor. URL: https://kep.ua/ru-ru/tan-delta-tester/tangens-3m#spec (accessed at 05.08.2023). (Rus)

State verification schedule for means of measuring of the electrical capacitance and dissipation factor. State Standard of Ukraine 4064-2001: Metrology. Kyiv: Derzhstandart Ukraine, 2002. 11 p. (Ukr)

Zakhidprylad. Kataloh vyrobiv. Mira oporu R4016. Tekhnichni kharakterystyky. URL: https://zapadpribor.com/ua/r4016/ (accessed at 05.08.2023). (Ukr)

Velichko O., Shevkun S., Dombrovskyi M., Dovhan V. Interlaboratory comparisons of calibration results for electrical capacity measures and inductance measures. Measurements infrastructure. 2022. Vol. 4. Pp. 1-5. DOI: https://doi.org/10.33955/v4[2022]-021.

Inglis A.D., Wood B.M., Cote M., Young R.B., Early M.D. Direct determination of capacitance standards using a quadrature bridge and a pair of quantized Hall resistors. Conference Digest Conference on Precision Electromagnetic Measurements. Ottawa, ON, Canada, 16-21 June 2002. DOI: https://doi.org/10.1109/CPEM.2002.1034812.

Nakamura Y., Nakanishi M., Sakamoto Y., Endo T. Development and uncertainty estimation of bridges for the link between capacitance and the QHR at 1 kHz., Conference on Precision Electromagnetic Measurements CPEM 2000. Sydney, NSW, Australia, 14-19 May 2000. DOI: https://doi.org/10.1109/CPEM.2000.851060.

Chua S.W., Kibble B.P., Hartland A. Comparison of Capacitance with AC Quantized Hall Resistance. Conference on Precision Electromagnetic Measurements. Washington DC, USA, 06 August 2002. DOI: https://doi.org/10.1109/CPEM.1998.699981.

Lan J., Zhang Z., Li Z., He Q., Zhao J. A digital compensation bridge for R-C comparisons. Metrologia. 2012. Vol. 49. Pp. 266-272. DOI: https://doi.org/10.1088/0026-1394/49/3/266.

Schurr J., Bürkel V., Kibble B.P. Realizing the farad from two ac quantum Hall resistances. Metrologia. 2009. Vol. 46. Pp. 619-628. DOI: https://doi.org/10.1088/0026-1394/46/6/003.

Bauer S., Behr R., Hagen T., Kieler O., Lee J., Palafox L., Schurr J. A novel two-terminal-pair pulse-driven Josephson impedance bridge linking a 10 nF capacitance standard to the quantized Hall resistance. Metrologia. 2017. Vol. 54. Pp. 152-160. DOI: https://doi.org/10.1088/1681-7575/aa5ba8.

Trinchera B., Callegaro L., D'Elia V. Quadrature Bridge for R-C Comparisons based on Polyphase Digital Synthesis. IEEE Instrumentation & Measurement Technology Conference. IMTC 2007. Warsaw, Poland, 01-03 May 2007. DOI: https://doi.org/10.1109/IMTC.2007.379013.

Raouf M., Helmy A., Kim K.-T., Kim M.-S. Measurement of capacitance and resistance using two perfectly synchronized voltage sources. Measurement. 2015. Vol. 60. Pp. 174-177. DOI: https://doi.org/10.1016/j.measurement.2014.10.011.

Surdu M.N., Lameko A.L., Karpov I.V., Kinard J., Koffman A. Theoretical basic of variotional quadrature AC bridges. Measurement Techniques. 2006. No 10. Pp. 58-64. DOI: https://doi.org/10.1007/s11018-006-0234-1.

Surdu M., Lameko,A., Surdu D., Kursin S. Wide frequency range quadrature bridge comparator. 16th International Congress of Metrology. Paris, France. October 2013. DOI: https://doi.org/10.1051/metrology/201311014.

Kibble B.P., Rayner G.H. Coaxial A.C. bridges. Bristol: Pdam Hilder Ltd., 1984. 203 p.

Bronshtein I.N., Semendiaiev K.A. Spravochnik po matematike dlia inzhenerov i uchashchikhsia vtusov. Moskva: Nauka, 1981. 720 p.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Array

Abstract views: 33 | PDF Downloads: 21

Downloads

Download data is not yet available.