Abstract
The electromagnetic processes in a bidirectional DC-DC converter using an asymmetric inverter in a battery energy storage system to manage energy flow between sources with different voltage levels are examined. The key advantages of bidirectional converters based on the asymmetric inverter topology are identified. The first advantage is the elimination of through-currents by avoiding combinations of serially connected active power switches during switching intervals. The second advantage is the improved dynamic performance of power switches by using external discrete diodes instead of internal diodes in the switches, significantly reducing the energy dissipated during the reverse recovery process. The article proposes an improvement to the structure of the asymmetric inverter with a magnetically coupled inductor for the bidirectional DC-DC converter through the addition of an extra inductor, which eliminates undesirable circulating currents in the converter that lead to power losses. Analytical expressions are derived for calculating current increments during switching intervals in the magnetically coupled inductor, and the relationship between its inductance and the parameters of the power sources, where circulating currents are absent, is determined. References 16, figures 7.
References
Zharkin A.F., Novsky V.O., Martynov V.V., Pazieiev A.G. Provision of high quality power supply in distribution networks with renewable energy sources. Visnyk NTU KhPI. Seriia: Elektrychni mashiny ta elektromekhanichne peretvorennia enerhii. 2019. Vol. 20(1345). Pp. 4-14. DOI: https://doi.org/10.20998/2409-9295.2019.20.01. (Ukr)
Yurchenko O.M., Martynov D.V., Martynov V.V. Research of a Bidirectional Voltage Converter for Application in Energy Storage Systems. Pratsi Instytutu elektrodynamiky NAN Ukrainy. 2023. Vyp. 65. Pp. 121-126. DOI: https://doi.org/10.15407/publishing2023.65.121. (Ukr)
El Fadil H., Giri F. Sliding Mode Control of Fuel Cell and Supercapacitor Hybrid Energy Storage System. IFAC Proceedings Volumes. 2012. Vol. 45. No 21. Pp. 669-674. DOI: https://doi.org/10.3182/20120902-4-FR-2032.00117.
Meng Z., Wang Y.-F., Yang L., Li W. High Frequency Dual-Buck Full-Bridge Inverter Utilizing a Dual-Core MCU and Parallel Algorithm for Renewable Energy Applications. Energies. 2017. Vol. 10(3). 402. DOI: https://doi.org/10.3390/en10030402.
Akbar F., Khan U.A., Khan A.A., Ahmed H.F., Elkhateb A., Cha H., Park J.-W. Dual-Buck ThreeSwitch Leg Converters with Reduced Number of Passive Components. IEEE Transactions on Power Electronics. 2022. Vol. 37. No 11. Pp. 13484-13498. DOI: https://doi.org/10.1109/TPEL.2022.3183834.
Sun P., Liu C., Lai J.-S., Chen C.-L. Cascade Dual Buck Inverter With Phase-Shift Control. IEEE Transactions on Power Electronics. 2012. Vol. 27. No 4. Pp. 2067-2077. DOI: https://doi.org/10.1109/TPEL.2011.2169282.
Liu J., Yan Y. A Novel Hysteresis Current Controlled Dual Buck Half Bridge Inverter. PESC Record - IEEE Annual Power Electronics Specialists Conference, Acapulko, Mexico, 15-19 June 2003. Vol. 4. Pp. 1615-1620. DOI: https://doi.org/10.1109/PESC.2003.1217699.
Yao Z., Xiao L., Yan Y. Control Strategy for Series and Parallel Output Dual-Buck Half Bridge Inverters Based on DSP Control. IEEE Transactions on Power Electronics. 2008. Vol. 24. No 2. Pp. 434–444. DOI: https://doi.org/10.1109/TPEL.2008.2007117.
Yao Z., Xiao L., Yan Y. Dual-Buck Full-Bridge Inverter With Hysteresis Current Control. IEEE Transactions on Industrial Electronics. 2009. Vol. 56. No 8. Pp. 3153–3160. DOI: https://doi.org/10.1109/TIE.2009.2022072.
Patarroyo-Gutierrez L.D., Hernández Gómez O.M., Jiménez López F.R. El inversor dual buck de inductor simple: control de voltaje y procedimiento para obtener su modelo matemático. Revista EIA. 2024. Vol. 21. No 41. Art. no. 4117. Pp.1-21. DOI: https://doi.org/10.24050/reia.v21i41.1692.
Qian H., Zhang J., Lai J.-S., Yu. W. A high-efficiency grid-tie battery energy storage system. IEEE Transactions on Power Electronics. 2011. Vol. 26. No 3. Pp. 886-896. DOI: https://doi.org/10.1109/TPEL.2010.2096562.
Gu B., Dominic J., Chen B., Lai J.-S. A high-efficiency single-phase bidirectional AC-DC converter with miniminized common mode voltages for battery energy storage systems. IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15-19 September 2013. Pp. 5145-5149. DOI: https://doi.org/10.1109/ECCE.2013.6647396.
Salmon J., Ewanchuk J., Knight A. PWM Inverters Using Split-Wound Coupled Inductors. IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 05-09 October 2008. Pp. 1-8. DOI: https://doi.org/10.1109/08IAS.2008.299.
Guo S., Huang A.Q. Control and analysis of the high efficiency split phase PWM inverter. 2014 IEEE Applied Power Electronics Conference and Exposition (APEC 2014), Fort Worth, TX, USA, 16-20 March 2014. Pp. 2415-2420. DOI: https://doi.org/10.1109/APEC.2014.6803641.
Rudenko Yu.V. Mode of Averaging of Pulse DC Converter Model. Tekhnichna Elektrodynamika. 2017. No 3. Pp. 42-48. DOI: https://doi.org/10.15407/techned2017.03.042. (Rus).
Martynov V.V., Rudenko Yu.V. Load characteristics of an asymmetric inverter with a magnetically coupled choke. Visnyk NTU KhPI. 2017. Vol. 27 (1227). Pp. 234-237. URL: https://repository.kpi.kharkov.ua/handle/KhPI-Press/33883. (Rus).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Tekhnichna Elektrodynamika

