IMPROVE OF UNCERTAIN MICROSATELLITE MAGNETIC CLEANLINESS BASED ON MAGNETIC FIELD SPATIAL HARMONICS COMPENSATION
ARTICLE_1_PDF

Keywords

microsatellite magnetic cleanliness
magnetic characteristics uncertainty
prediction and control
geometric inverse magneto static problem
computer simulation магнітна чистота мікросупутника
невизначеність магнітних характеристик
прогнозування та керування
геометрична обернена задача магнітостатики
комп’ютерне моделювання

How to Cite

[1]
Kuznetsov, B. et al. 2025. IMPROVE OF UNCERTAIN MICROSATELLITE MAGNETIC CLEANLINESS BASED ON MAGNETIC FIELD SPATIAL HARMONICS COMPENSATION. Tekhnichna Elektrodynamika. 1 (Jan. 2025), 003. DOI:https://doi.org/10.15407/techned2025.01.003.

Abstract

Problem of microsatellite magnetic cleanliness (MMC) improving by magnetic field (MF) spatial harmonics compensation and magnetic characteristics uncertainty (MCU) sensitivity reducing considered. Prediction and control by uncertain microsatellite MC design are geometric inverse magneto static problem (GIMSP) reduced to vector game solution. Vector payoff calculated based on development method for analytical calculation of magnetostatic field induction of spherical sources in the Cartesian coordinate system (CCS) using Wolfram Mathematica ® software. Both vector game solution calculated based on particles multi-swarm optimization (PMSO) algorithms from Pareto optimal solutions taking into account binary preference relations. Prediction model and location of compensating units in spherical coordinates as well as multipole harmonic coefficients of dipoles, quadrupoles and octupoles are calculated during prediction and control of uncertain microsatellite MC. Results of MC improving for microsatellite «Sich» family by compensation of dipoles, quadrupoles and octupoles components of initial MF spatial harmonics and reducing sensitivity to MCU are given. References 17, figures 2.

https://doi.org/10.15407/techned2025.01.003
ARTICLE_1_PDF

References

Droughts S.A., Fedorov O.P. Space project Ionosat-Micro. Monograph. Kyiv: Akademperiodika Publ., 2013. 218 p. (Rus).

Rozov V.Yu., Getman A.V., Petrov S.V. Spacecraft magnetism. Tekhnichna elektrodynamika. Tematychnyi vypusk Problemy suchasnoi elektrotekhniky. Part 2. 2010. Pp. 144-147. (Rus).

ECSS-E-HB-20-07A. Space engineering: Electromagnetic compatibility hand-book. ESA-ESTEC. Noordwijk: Requirements & Standards Division, 2012. 228 p.

Baranov M.I., Rozov V.Yu., Sokol Ye.I. To the 100th anniversary of the National Academy of Sciences of Ukraine – the cradle of domestic science and technology. Electrical Engineering & Electromechanics. 2018. No 5. Pp. 3-11. DOI: https://doi.org/10.20998/2074-272X.2018.5.01.

Weikert S., Mehlem K., Wiegand A. Spacecrat magnetic cleanliness prediction and control. ESA Workshop on Aerospace EMC, Venice, Italy, May 2012. URL: http://articles.adsabs.harvard.edu/pdf/2012ESASP.702E..44W (accessed at 15.06.2024).

Getman A.V. Spatial harmonic analysis of the magnetic field of the sensor of the neutral plasma component. Eastern European Journal of Advanced Technologies. 2010. Vol. 6. No 5(48). Pp. 35-38.

Janani Moorthy, Visakamoorthi Balasubramani, Muthukumar Palanisamy, Sung-ho Hur. Memory sampled-data control design for attitude stabilization of uncertain spacecraft with randomly missing measurements. Advances in Space Research. 2024. Vol. 74. Issue 3. Pp. 1276-1287. DOI: https://doi.org/10.1016/j.asr.2024.04.047.

Zhiwei Hou, Xuejing Lan. Adaptive sliding mode and RBF neural network based fault tolerant attitude control for spacecraft with unknown uncertainties and disturbances. Advances in Space Research. 2024. Vol. 74. Issue 4. Pp. 1680-1692. DOI: https://doi.org/10.1016/j.asr.2024.05.021.

Matsushima M., Tsunakawa H., Iijima Yu-Ichi, Nakazawa S., Matsuoka A., Ikegami S., Ishikawa T., Shibuya H., Hisayoshi Shimizu H., Takahashi F. Magnetic Cleanliness Program Under Control of Electromagnetic Compatibility for the SELENE (Kaguya) Spacecraft. Space Sci. Rev. 2010. Vol. 154. Pp. 253-264. DOI: https://doi.org/10.1007/s11214-010-9655-x.

Boghosian M., Narvaez P., Herman R. Magnetic testing, and modeling, simulation and analysis for space applications. IEEE International Symposium on Electromagnetic Compatibility, Denver, CO, USA, 05–09 August 2013. Pp. 265-270. DOI: https://doi.org/10.1109/ISEMC.2013.6670421.

Mehlem K., Wiegand A. Magnetostatic cleanliness of spacecraft. Asia-Pacific International Symposium on Electromagnetic Compatibility, Beijing, China, 12–16 April 2010. Pp. 936-944. DOI: https://doi.org/10.1109/APEMC.2010.5475692.

Chen X., Liu S., Sheng T., Zhao Y., Yao W. The satellite layout optimization design approach for minimizing the residual magnetic flux density of micro- and nano-satellites. Acta Astronautica. 2019. Vol. 163. Part B. Pp. 299-306. DOI: https://doi.org/10.1016/j.actaastro.2018.12.006.

Yao W., Chen X., Luo W., Van Tooren M., Guo J. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Progress in Aerospace Sciences. 2011. Vol. 47. Issue 6. Pp. 450-479. DOI: https://doi.org/10.1016/j.paerosci.2011.05.001.

Walton MA. Managing uncertainty in space systems conceptual design using portfolio theory. PhD dissertation, Massachusetts Institute of Technology, 2002. 242 p.

Junge A., Marliani F. Prediction of DC Magnetic Fields for Magnetic Cleanliness on Spacecraft. IEEE Int. Symp. EMC, Long Beach, California, 14–18 August 2011. Pp. 834-839. DOI: https://doi.org/10.1109/ISEMC.2011.6038424.

Sushchenko O., Averyanova Y., Ostroumov I., Kuzmenko N., Zaliskyi M., Solomentsev O., Kuznetsov B., Nikitina T., Havrylenko O., Popov A., Volosyuk V., Shmatko O., Ruzhentsev N., Zhyla S., Pavlikov V., Dergachov K., Tserne E. Algorithms for Design of Robust Stabilization Systems. Computational Science and Its Applications – ICCSA 2022. 2022. Vol. 13375. Pp. 198-213. DOI: https://doi.org/10.1007/978-3-031-10522-7_15.

Hashim F.A., Hussain K., Houssein E.H., Mabrouk M.S., Al-Atabany W. Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Applied Intelligence. 2021. Vol. 51. Pp. 1531-1551. DOI: https://doi.org/10.1007/s10489-020-01893-z.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2024 Tekhnichna Elektrodynamika

Abstract views: 312 | PDF Downloads: 84

Downloads

Download data is not yet available.