THE INFLUENCE OF STOCHASTIC ENERGY CHARACTER IN DISTRIBUTED GENERATIONSYSTEMS ON THEIR STABILITY
ARTICLE_10_PDF (Українська)

Keywords

distributed generation systems
Heisenberg’s uncertainty principle
storage battery
stochastic processes системи розосередженої генерації
принцип невизначеності Гейзенберга
накопичувач
випад-кові процеси

How to Cite

[1]
Клен, К. and Жуйков, В. 2020. THE INFLUENCE OF STOCHASTIC ENERGY CHARACTER IN DISTRIBUTED GENERATIONSYSTEMS ON THEIR STABILITY. Tekhnichna Elektrodynamika. 3 (May 2020), 062. DOI:https://doi.org/10.15407/techned2020.03.062.

Abstract

Formulas for calculating the process of energy change, taking into account its random nature, in the space of two and three variables in distributed systems are given. A graph of a discrete mapping of the energy change process and a Lameri diagram are presented to investigate the stability of this process. It is noted that due to the stochastic nature of the energy change process, the system can leave the steady-state zone. The method of finding the differential of a random process with the Wiener component according to the Ito formula is presented. The technique of applying the law of the iterated logarithm to the Wiener process is presented, and graphs of its typical trajectories are shown both at the entire observation interval and around zero. The necessity of application in distributed generation systems the energy storage for ensuring their stable operation is substantiated. References 11, figures 8.

https://doi.org/10.15407/techned2020.03.062
ARTICLE_10_PDF (Українська)

References

Zhuikov V.Ya., Lukyanenko L.M., Mikolaiets D.A., Osypenko K.S., Stelyuk A.O., Tereshenko T.O., Yamnenko Yu.S. Improving the efficiency of renewable energy systems. Kyiv: Kafedra, 2018. 368 p. (Ukr)

Stognij B.S., Kyrylenko O.V., Prahovnyk A.V., Denisyuk S.P. The evolution of smart grids and their prospects in Ukraine. Tekhnichna Elektrodynamika. 2012. No 5. Pp. 50-52. (Ukr)

Zhuikov V.Ya., Osypenko K.S. Heisenberg uncertainty principle in estimating energy levels generated by renewable energy sources. Tekhnichna Elektrodynamika. 2017. No 1. Pp. 10-16. (Ukr) DOI: https://doi.org/10.15407/techned2017.01.010

Zhuikov V.Ya., Osypenko K.S. Estimation of fractal dimension and transfer function of clouds. Mikrosistemy, elektronika ta akustyka. 2017. Vol. 22. No 5. Pp. 13-19. (Ukr)

Borodin A.N., Salminien Paavo. The Brownian Movement Handbook: Facts and Formulas. Saint-Petersburg: Lan, 2000. 639 p. (Rus)

Measurements using power quality analyzers. URL: http://khomovelectro.ru/articles/izmereniya-s-pomoshchyu-analizatorov-kachestva-elektroenergii.html (accessed: 18.10.2019). (Rus)

Klymontovych Yu.L. Introduction to Open Systems Physics. Moskva: Yanus-K, 2002. 284 p. (Rus)

Kuznetsov D.F. Some questions of the theory of numerical solution of stochastic Ito differential equations. URL: http://diffjournal.spbu.ru/pdf/j011.pdf (accessed: 18.10.2019). (Rus)

Bulynskiy A.V., Shyryaev A.N. Theory of random processes. Moskva: Fizmatlit, 2005. 408 p. (Rus)

Laboratory of renewable energy sources. URL: https://www.lares.fer.hr/ (Accessed 18.10.2019).

Marcelo G. Molina. Distributed energy storage systems for applications in future smart grids. Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA). Montevideo, Uruguay, September 3-5, 2012. DOI: https://doi.org/10.1109/TDC-LA.2012.6319051

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Array

Abstract views: 170 | PDF Downloads: 34

Downloads