QUASI-STATIC MODEL OF RESONANT POWER CONVERTER
ARTICLE_2_PDF

Keywords

resonant converter
quasi-static model
stationary function
transient function резонансний перетворювач
квазістатична модель
стаціонарна функція
перехідна функція

How to Cite

[1]
Pavlov, G. et al. 2025. QUASI-STATIC MODEL OF RESONANT POWER CONVERTER. Tekhnichna Elektrodynamika. 5 (Sep. 2025), 009. DOI:https://doi.org/10.15407/techned2025.05.009.

Abstract

In this paper, a quasi-static model of the resonant power converter with inverter, LLC circuit, and diode rectifier is obtained, which is a linear mathematical model derived from the analysis of quasi-steady-state processes of the substitution circuit for constant values of input and output signals. The quasi-static model is determined on the basis of the dynamic model of the resonant converter for infinite time, which made it possible to obtain analytical expressions of static characteristics based on transient functions. As a result of calculations based on the quasi-static model, the family of static characteristics of the resonant converter, which is replaced by the structure with equivalent voltage generators and a passive part of the circuit, is obtained. The passive part contains the resonant circuit, the voltage transformer, and some parasitic parameters of the transformer and other circuit elements. Equivalent voltage generators replace the voltage inverter with the power source and the rectifier with the load. Thus, the switched power circuit of the resonant converter is replaced by the non-switched circuit with voltage generators and the passive multipole. The input values of the substitution circuit are the voltages of equivalent generators, and their currents are the output values. Quasi-steady-state processes are represented as a set of stationary functions consisting of stationary transient functions. Stationary functions are the sum of individual transient functions that repeat from period to period of the operating frequency. To determine the transient functions according to the finite value theorem of the z-image, we use the transfer functions obtained from the discrete dynamic model of the resonant converter. The algorithm for switching power valves is taken into account when formulating the steady-state current formula of the output equivalent generator, at the intervals of non-zero voltage of which the average load current is determined by integrating the steady-state current. Comparison of the calculated static characteristics with the experimental characteristics confirmed the correctness of the theoretical results. References 24, figures 6, table 1.

https://doi.org/10.15407/techned2025.05.009
ARTICLE_2_PDF

References

Dymerets A.V., Yershov R.D., Gorodny A.N., Revko A.S., Denisov Y.O. Control characteristics of zero-current-switching quasi-resonant buck converter under variation of resonant circuit and load parameters. IEEE EUROCON 19th International Conference on Smart Technologies, Lviv, Ukraine, 06-08 July 2021. Pp. 443-448. DOI: https://doi.org/10.1109/EUROCON52738.2021.9535597.

Pavlov G.V., Obrubov A.V., Vinnichenko I.L., Makhnov A.O. Calculation of the regulatory characteristics of resonant converters by the superposition method. Tekhnichna Elektrodynamika. 2024. No 4. Pp. 24-33. (Ukr) DOI: https://doi.org/10.15407/techned2024.04.024.

Dymerets A.V., Yershov R.D., Gorodny A.N., Revko A.S., Savchenko D., Lytvyn S.V. Static characteristics of zero-current-switching quasi-resonant buck converter under variation of resonant circuit and load parameters. IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 10-14 October 2022. Pp. 721-727. DOI: https://doi.org/10.1109/ELNANO54667.2022.9927073.

Pavlov G., Obrubov A., Vinnychenko I. Design procedure of static characteristics of the resonant converters. IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 26-28 August 2021. Pp. 401-406. DOI: https://doi.org/10.1109/UKRCON53503.2021.9575698.

Ninomiya T., Higashi T., Harada K., Tsuya N., Gohnai T., Honda Y. Analysis of the static and dynamic characteristics of push-pull parallel resonant converters. 17th Annual IEEE Power Electronics Specialists Conference. Vancouver, Canada, 23-27 June 1986. Pp. 367-374. DOI: https://doi.org/10.1109/PESC.1986.7415583.

Firmansyah E., Tomioka S., Abe S., Shoyama M., Ninomiya T. Steady state characteristics of active-clamped full-wave zero-current-switched quasi-resonant boost converters. IEEE 6th International Power Electronics and Motion Control Conference. Wuhan, China, 17-20 May 2009. Pp. 556-560. DOI: https://doi.org/10.1109/IPEMC.2009.5157449.

Pavlov G., Vinnichenko I., Pokrovskiy M. Research of the interrelationship between the frequency converter on the basis of the resonant inverter with nonlinear control power unit parameters and its load. IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, Ukraine, 29 May – 02 June 2017. Pp. 554-559. DOI: https://doi.org/10.1109/UKRCON.2017.8100300.

Pavlov G.V., Vinnichenko I.L., Obrubov A.V. Frequency converter with the reduced thd of the output voltagel. Tekhnichna Elektrodynamika. 2016. No 5. Pp. 14-16. (Ukr) DOI: https://doi.org/10.15407/techned2016.05.014.

Pavlov G., Vinnichenko I., Pokrovskiy M. Estimation of energy efficiency of the frequency converter based on the resonant inverter with pulse-density control. IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS), Kharkiv, Ukraine, 10-14 September 2018. Pp. 101-105. DOI: https://doi.org/10.1109/IEPS.2018.8559499.

Martin-Ramos J.A., Diaz J., Pernia A.M., Lopera J.M., Nuno F. Dynamic and steady-state models for the PRC-LCC resonant topology with a capacitor as output filter. IEEE Transactions on Industrial Electronics. 2007. Vol. 54. No 4. Pp. 2262-2275. DOI: https://doi.org/10.1109/TIE.2007.894763.

Chandwani A., Mallik A., Akturk A. Steady-state model-derived multivariable loss optimization for triple active C³L³ resonant converter. IEEE Transactions on Transportation Electrification. 2024. Vol. 10. No 1. Pp. 1729-1746. DOI: https://doi.org/10.1109/TTE.2023.3266744.

Introduction to Resonant Converters. URL: https://www.monolithicpower.com/en/learning/mpscholar/isolation-solutions/llc-converters/introduction-to-resonant-converters?srsltid=AfmBOoolNYDb_cuNO9IEJaRocOJVkdvY3WJVYckiNdefDCQdB10Uh07T (accessed at 25.12.2024)

Adragna C. LLC resonant converters: an overview of modeling, control and design methods and challenges. Foundations and Trends® in Electric Energy Systems. 2022. Vol. 5. No 2–4. Pp. 75-491. DOI: https://doi.org/10.1561/3100000029.

Lazar J.F., Martinelli R. Steady-state analysis of the LLC series resonant converter. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition. Anaheim, CA, USA, 04-08 March 2001. Vol. 2. Pp. 728-735. DOI: https://doi.org/10.1109/APEC.2001.912451.

Yang R., Ding H., Xu Y., Yao L., Xiang Y. An analytical steady-state model of LCC type series–parallel resonant converter with capacitive output filter. IEEE Transactions on Power Electronics. 2014. Vol. 29. No 1. Pp. 328-338 DOI: https://doi.org/10.1109/TPEL.2013.2248753.

Abdel-Rahman S. Resonant LLC Converter: Operation and Design. Infineon Technologies North America (IFNA) Corp. 2012. Pp. 1-19. URL:

https://www.infineon.com/dgdl/Application_Note_Resonant+LLC+Converter+Operation+and+Design_Infineon.pdf?fileId=db3a30433a047ba0013a4a60e3be64a1. (accessed at 25.12.2024)

Kundu U., Sensarma P. A unified approach for automatic resonant frequency tracking in LLC DC–DC Converter. IEEE Transactions on Industrial Electronics. 2017. Vol. 64. No 12. Pp. 9311-9321. DOI: https://doi.org/10.1109/TIE.2017.2711520.

He R., Wang H., Xue B. Automatic resonant frequency tracking scheme for LLC resonant converter based on adaptive extended state observer. IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA. 20-24 March 2022. Pp. 22-26. DOI: https://doi.org/10.1109/APEC43599.2022.9773470.

Pavlov G., Obrubov A., Vinnichenko I. Optimizing the operation of charging self-generating resonant inverters. Eastern-European Journal of Enterprise Technologies. 2022. Vol. 1. No 5(115). Pp. 23-34. DOI: https://doi.org/10.15587/1729-4061.2022.252148.

Pavlov G., Obrubov A., Vinnichenko I. Determining the dynamic model of the charging resonant converter with inductive coupling by an experimental-analytical method. Eastern-European Journal of Enterprise Technologies. 2022. Vol. 4. No 8(118). Pp. 17-28. DOI: https://doi.org/10.15587/1729-4061.2022.263526.

Wang Z.C., Wang D.Y., Zhan Z.J., Wang B.C., Jia L.J. Analysis and design of an LCC resonant current-source power supply for PFU charging applications. IEEE Pulsed Power Conference (PPC). Austin, TX, USA, 31 May – 04 June 2015. Pp. 1-6. DOI: https://doi.org/10.1109/PPC.2015.7296942.

Chen X., Batarseh I. A fixed switching frequency dual-input LLC converter with PWM controlled semi-active rectifiers for PV applications. IEEE Applied Power Electronics Conference and Exposition (APEC). Phoenix, AZ, USA. 14-17 June 2021. Pp. 320-326. DOI: https://doi.org/10.1109/APEC42165.2021.9487039.

Koscelnik J., Sedo J., Dobrucky B. Modeling of resonant converter with nonlinear inductance. International Conference on Applied Electronics. Pilsen, Czech Republic. 09-10 September 2014. Pp. 153-156. DOI: https://doi.org/10.1109/AE.2014.7011689.

Voitenko V.P. Algorithm stages of quasi-optimal regulation in system with a pulse converter. Tekhnichna Elektrodynamika. 2012. No 3. Pp. 125-126. URL: https://previous.techned.org.ua/2012_3/st60.pdf. (Rus.)

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 Tekhnichna Elektrodynamika

Abstract views: 330 | PDF Downloads: 52

Downloads

Download data is not yet available.