Abstract
The analytical solution of the three-dimensional quasi-stationary electromagnetic field problem for a current located near conducting body with a flat surface is considered. The exact and approximate solution of the problem is presented. The exact solution has no restrictions on the external field configuration, physical properties of the medium, and frequency. The approximate solution is based on an expansion in asymptotic series and has limitations: for sinusoidal field, the solution is limited to frequencies above the lower limit; for pulsed field, the solution is limited by the initial time interval of the current pulse. Based on comparison of the results of exact and approximate calculations for nonuniform sinusoidal field at the interface between the media, the admissible value of the introduced small parameter is determined. For pulsed field the proposed choice of the limited time interval for calculating electomagnetic field using the asymptotic method is justified. References 29, figures 7.
References
Babutsky A., Chrysanthou A., Ioannou J. Influence of pulsed electric current treatment on corrosion of structural metals. Strength of materials. 2009. Vol. 41. No 4. Pp. 387-391. DOI: https://doi.org/10.1007/s11223-009-9142-3.
Gallo F., Satapathy S., Ravi-Chandar K. Melting and crack growth in electrical conductors subjected to short-duration current pulses. International Journal of Fracture. 2011. Vol. 16. Pp. 183–193. DOI: https://doi.org/10.1007/s10704-010-9543-0.
Vasetsky Yu.M., Kondratenko I.P. Electromagnetic field of the inductor for local electric pulse effects on metal products. Tekhnichna Elektrodynamika. 2020. No 4. Pp. 11-14. DOI: https://doi.org/10.15407/techned2020.04.011.
Psyk V., Risch D., Kinsey B.L., Tekkaya A.E., Kleiner M. Electromagnetic forming–A review. Journal of Materials Processing Technology. 2011. Vol. 211. Issue 5. Pp. 787-829. DOI: https://doi.org/10.1016/j.jmatprotec.2010.12.012.
Gayakwada D., Dargara M. K., Sharmaa P.K. Rajesh purohitb, & Ranab, R.S. A Review on Electromagnetic Forming Process. Procedia Materials Science. 2014. Vol. 6. Pp. 520-527. DOI: https://doi.org/10.1016/j.mspro.2014.07.066.
Batygin Y., Barbashova M., Sabokar O. Electromagnetic Metal Forming for Advanced Processing Technologies. Springer, Cham., 2018. DOI: https://doi.org/10.1007/978-3-319-74570-1.
Rudnev V., Loveless D., Cook R., Black M. Handbook of induction heating. London: Taylor & Francis Ltd, 2017. 772 p. DOI: https://doi.org/10.1201/9781315117485.
Lucía O., Maussion P., Dede E.J., Burdío J.M. Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges. IEEE Transactions on Industrial Electronics. 2014. Vol. 61. Issue 5. Pp. 2509 – 2520. DOI: https://doi.org/10.1109/TIE.2013.2281162.
Acero J., Alonso R., Burdio J.M., Barragan L.A., Puyal D. Analytical equivalent impedance for a planar induction heating system. IEEE Transaction on Magnetics. 2006. Vol. 42. No 1. Pp. 84-86. DOI: https://doi.org/10.1109/TMAG.2005.854443.
Vasetsky Y.M., Kondratenko I.P., Rashchepkin A.P., Mazurenko I.L. Electromagnetic interactions between current contours and conductive medium. Kyiv: Pro Format, 2019. 221 p. (Rus).
Rytov S.M., Calculation of skin effect by perturbation method. Journal of Experimental and Theoretical Physics. 1940. Vol. 10. Issue 2. Pp. 180–190. (Rus).
Yuferev S., Ida N. Surface Impedance Boundary Conditions: A Comprehensive Approach. CRC Press, 2018. 412 p. https://doi.org/DOI: 10.1201/9781315219929.
Leontovich M.A. On the Approximate Boundary Conditions for Electromagnetic Field on the Surface of Highly Conducting Bodies. Propagation of electromagnetic waves. Moscow. USSR Academy of Sciences Publ., 1948. Pp. 5-20 (Rus).
Landau L.D., Lifshitz E.M. Electrodynamics of Continuous Media. Elsevier Ltd, 1984. 475 p. DOI: https://doi.org/10.1016/B978-0-08-030275-1.50024-2.
Berdnik S.L., Penkin D.Y., Katrich V.A., Penkin Yu.M., Nesterenko M.V. Using the concept of surface impedance in problems of electrodynamics (75 years later). Radio Physics and Radio Astronomy. 2014. Vol. 19. No 1. Pp. 57–80. DOI: https://doi.org/10.15407/rpra19.01.057.
Liu X., Yang F., Li M., Xu S. Generalized Boundary Conditions in Surface Electromagnetics: Fundamental Theorems and Surface Characterizations. Applied Sciences. 2019. Vol. 9. Issue 9. Pp. 1891- 1918. DOI: https://doi.org/10.3390/app9091891.
Vasetsky Yu.M., Dziuba K.K. An analytical calculation method of quasi-stationary three-dimensional electromagnetic field created by the arbitrary current contour that located near conducting body. Technical Electrodynamics. 2017. No 5. Pp. 7–17. (Rus). DOI: https://doi.org/10.15407/techned2017.05.007.
Vasetsky Yu.M., Dziuba K.K. Three-dimensional quasi-stationary electromagnetic field generated by arbitrary current contour near conducting body. Technical Electrodynamics. 2018. No 1. Pp. 3–12. DOI: https://doi.org/10.15407/techned2018.01.003.
Dzjuba K., Mazurenko I. and Vasetsky Y. An assessment of accuracy of approximate mathematical model of pulse electromagnetic field of current flowing near conductive body. 16th International Conference on Computational Problems of Electrical Engineering (CPEE). Lviv, Ukraine. 2015. Pp. 36-38. DOI: https://doi.org/10.1109/CPEE.2015.7333331.
Vasetsky Yu. Nonuniform electromagnetic field at the interface between dielectric and conducting media. Progress in Electromagnetics Research Letters. 2020. Vol. 92. Pp. 101-107. DOI: https://doi.org/10.2528/PIERL20050802.
Vasetsky Yu.M. Penetration of non-uniform electromagnetic field into conducting body. Electrical Engineering & Electromechanics. 2021. No. 2. Pp. 43-53. DOI: https://doi.org/10.20998/2074-272X.2021.2.07.
Vasetsky Yu.M. Three-dimensional quasi-stationary electromagnetic field of the current near conducting body. Kyiv: Pro Format, 2019. 212 p. (Rus). ISBN 978-617-7457-84-7.
Zommerfeld A. Elektrodynamics. Moskva: Izdatelstvo Inostrannoy literatury, 1958. 501 p. (Rus.)
Tozoni O.V. Method of secondary sources in the electrical engineer. Moskva: Energiya, 1975. 296 p. (Rus.)
Nayfeh A.H.. Introduction to Perturbation Techniques. A Wiley-VCH, 1993. 536 p.
Smirnov V.I. Higher Mathematics Course. Vol. 3. Part 2. Moskva: Nauka, 1974. 672 p. (Rus).
Korn G, Korn T. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. Dover Publications, 2000. 1152 p.
Polivanov K.M. Theoretical bases of electrical engineers. Vol. 1. Linear electrical circuits with lumped parameters. Moskva-Leningrad: Energiia, 1965. 360 p. (Rus)
Knoepfel H. Pulsed High Magnetic Fields. 1997. Canada: John Wiley & Sons, Limited, 372 p.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2021 Array