CRITERIA FOR THE NECESSARY AND SUFFICIENT NUMBER OF ITERATIONS OF FILTERING NON-PERIODIC NON-STATIONARY SIGNALS BY MULTI-ITERATIVE METHODS
ARTICLE_4_PDF (Українська)

Keywords

non-stationary non-periodic signals
multi-iterative methods of signals filtering
criteria necessary and sufficient number of iterations нестаціонарні неперіодичні сигнали
багатоітераційні методи фільтрації сигналів
критерії необхідної та достатньої кількості ітерацій

How to Cite

[1]
Шидловська, Н., Захарченко, С. and Черкаський, О. 2017. CRITERIA FOR THE NECESSARY AND SUFFICIENT NUMBER OF ITERATIONS OF FILTERING NON-PERIODIC NON-STATIONARY SIGNALS BY MULTI-ITERATIVE METHODS. Tekhnichna Elektrodynamika. 5 (Aug. 2017), 023. DOI:https://doi.org/10.15407/techned2017.05.023.

Abstract

An analysis of efficiency of procedure-oriented criteria for determining the required number of filtration iterations of non-stationary non-periodic signals by the multi-iterative method of the moving average with an increasing width of the filtering window on an instance of pulses of voltage on the plasma-erosive load and of current in it had fulfilled. Two main groups of criteria are considered which are based on a comparison of the signal at the current iteration of its filtering either with the signal at the previous iteration or with a reference signal. Also criterion which has properties of criteria of both these groups is considered. The low effectiveness and nonuniversality of the known criteria is shown. New objectively-oriented criteria for the necessary and sufficient number of iterations of filtering non-stationary nonperiodic signals, adaptive to the requirements for further signal processing, are proposed and an analysis of their effectiveness had fulfilled. References 13, figures 2, tables 4.

https://doi.org/10.15407/techned2017.05.023
ARTICLE_4_PDF (Українська)

References

Baskakov S.I. Radio engineering circuits and signals. – Moskva: Vysshaia shkola, 1988. – 448 p. (Rus)

Goronovsky I.S. Radio engineering circuits and signals. – Moskva: Radio i sviaz, 1986. – 512 p. (Rus)

Davydov A.V. Signals and Systems. Lectures and practical work on the PC. Introduction to Signals and Systems Theory. – Available at: http://geoin.org/signals/index.html. (Accessed 06.02.2017). (Rus)

Zagretdinov A.R., Busarov A.V., Busarov V.V. Comparison of methods for stopping sifting in the empirical mode decomposition of signals // Inzhenernyi vestnik Dona. – 2015. – No 3. – Available at: www.ivdon.ru/ru/magazine/archive/n3y2015/3238. (Accessed 06.02.2017). (Rus)

Matveyev Yu.N., Simonchik K.K., Tropchenko A.Yu., Khitrov M.V. Digital processing of signals. – Sankt-Petersburg: S-PbNIU ITMO, 2013. – 166 p. (Rus)

Tsidelko V.D., Yaremchuk N.A. Measurement uncertainty. Data processing and presenting the measurement result. – Kyiv: Polítekhníka, 2002. – 176 p. (Ukr)

Shydlovska N.A., Zakharchenko S.M., Cherkaskyi O.P. Comparison of the smoothing efficiency of signals of voltage on the plasma-erosive load and its current by multi-iterative filtration methods // Tekhnichna Elektrodynamika. – 2017. – No 4. – Pp. 3–13. (Ukr)

Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-Ch., Tung C.C, Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. London A, Math. Phys. Sci. – 1998. – Vol. 454. – Issue 1971. – Pp. 903–995.

Kabir M.A., Shahnaz C. Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains // Biomedical Signal Processing and Control. – 2012. – No 7. – Pp. 481–489.

Karthikeyan P., Murugappan M., Yaacob S. ECG signal denoising using wavelet thresholding techniques in human stress assessment // International Journal on Electrical Engineering and Informatics. – 2012. – Vol. 4. – No 2. – Pp. 306–319.

Komaty A., Boudraa A.O., Augier B., Daré-Emzivat D. EMD-Based Filtering Using Similarity Measure Between Probability Density Functions of IMFs // IEEE Transactions on Instrumentation and Measurement. – 2014. – Vol. 63. – No 1. – Pp. 27–34.

Sadooghi M.S., Khadem S.E. A new performance evaluation scheme for jet engine vibration signal denoising // Mechanical Systems and Signal Processing. – 2016. – Vol. 76–77. – Pp. 201–212.

Yang G., Liu Y., Wang Y., Zhu Z. EMD interval thresholding denoising based on similarity measure to select relevant modes // Signal Processing. – 2015. – Vol. 109. – Pp. 95–109.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2022 Array

Abstract views: 145 | PDF Downloads: 47

Downloads