Abstract
The purpose of the work is to study the influence of the size of the discharge gap and the time dependence of the increase in the pulsed electric field to the characteristics of the avalanche stage of a pulse dielectric barrier discharge (PDBD) from the beginning of electron drift in increasing electric field, taking into account the threshold nature of the impact ionization process in the gas, the influence of photo-ionization to the enlargement of avalanches, diffusion and electrostatic repulsion of electrons at the head of the avalanche. Computational studies were carried out for the specific electrode system with the dielectric barrier located on the cathode for gas gaps 1–3 mm, voltage pulse with the amplitude of 25 kV and time of its achievement of 50 ns. It is established that after three or four stages, the electric field strength of the avalanche-streamer transition has a value of 80-100 kV/cm, which occurs ~30 ns after the voltage is applied, and weakly depends on the size of the gas gap. For the test experiment with gap of 1.5 mm, such values occur at the moment of reaching the maximum current value. It is determined that the size of the electron avalanche for the given voltage pulse in the PDBD is determined by the process of electron diffusion. It is shown that after applying voltage as a result of the first stage of electron drift, the number of emitted photons capable of generating effective electrons for the further development of the avalanche process strongly depends on the size of the discharge gap. The limits of the discharge gaps with significantly different possibilities to initiate the avalanches at subsequent stages are determined. References 22, figures 9, tables 2.
References
Xin Pei Lu, Mounir Laroussi. Temporal and spatial emission behavior of homogeneous dielectric barrier discharge driven by unipolar sub-microsecond square pulses. Journal of Physics D: Applied Physics. 2006. Vol. 39. Pp. 1127-1131. DOI: https://doi.org/10.1088/0022-3727/39/6/018.
Shao Tao, Long Kaihua, Zhang Cheng, Yan Ping, Zhang Shichang, Pan Ruzheng. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. Journal of Physics D: Applied Physics. 2008. Vol. 41. 215203 (8pp). DOI: https://doi.org/10.1088/0022-3727/41/21/215203.
Shuai Zhang, Li Jia, Wen-chun Wang, De-zheng Yang, Kai Tang, Zhi-jie Liu. The influencing factors of nanosecond pulse homogeneous dielectric barrier discharge in air. Spectrochimica Acta Part A: Molecular and Bio-molecular Spectroscopy. 2014. Vol. 117. Pp. 535-540. DOI: https://doi.org/10.1016/j.saa.2013.08.051.
Kogelschatz U. Review Dielectric-barrier Discharges: Their History, Discharge Physics, and Industrial Appli-cations. Plasma Chemistry and Plasma Processing. 2003. Vol. 23. No 1. Рр. 1-47. DOI: https://doi.org/10.1023/A:1022470901385.
Schmidt M., Holub M., Jogi I., Sikk M. Treatment of industrial exhaust gases by a dielectric barrier dis-charge. Eur. Phys. J. Appl. Phys. 2016. No 75. P. 24708. DOI: https://doi.org/10.1051/epjap/2016150554 .
Bozhko I.V., Bereka V.O. Uniform of pulse barrier discharge in the air of atmospheric pressure in the pres-ence of water in a drop-film condition. Tekhnichna Elektrodynamika. 2019. No 5. Pp. 17-21. DOI: https://doi.org/10.15407/techned2019.05.017. (Ukr)
Bereka V.O., Bozhko I.V., Kondratenko I.P. Influence of parameters of water movement at its treatments on energy efficiency pulse barrier discharge. Tekhnichna Elektrodynamika. 2022. No 3. Pp. 62-68. DOI: https://doi.org/10.15407/techned2022.03.062. (Ukr)
Lobanov L.M., Berdnikova O.M., Pashchyn M.O., Mykhoduj O.L., Kushnaryova O.S., Solomiychuk T.G., Kryvyi V.I. Strengthening of welded structures of 25KHGNMT steel by pulsed barrier discharge treatment. Av-tomaticheskaya Svarka (Automatic Welding). 2022. No 12. Pp. 3-8. DOI: https://doi.org/10.37434/as2022.12.01 . (Ukr)
Bozhko I.V., Kondratenko I.P., Lobanov L.M., Pashchin М.О., Berdnikova O.M., Mykhodui O.L., Kushnarova O.S., Goncharov P.V. Pulsed barrier discharge for treatment of surfaces of 25ХГНМТ steel plates. Tekhnichna Elektrodynamika. 2023. No 1. Pp. 76-81. DOI: https://doi.org/10.15407/techned2023.01.076. (Ukr)
Rizer Yu.P. Gas Discharge Physics. Springer. Berlin Heidelberg, 2011. 449 p. (Rus).
Meek J.M., Craggs J.D. Electrical Breakdown of Gases. Wiley, 1953. 507 p. DOI: https://doi.org/10.1002/qj.49708034425.
Korolev Yu. D., Mesyats G. A. Physics of Pulsed Breakdown in Gases. Ural Division of the Russian Acad-emy of Sciences, 1998. 274 p. (Rus)
Beyer M., Boeck W., Möller K., Zaengl W. Hochspannungstechnik. Theoretische und praktische Grundla-gen. Springer-Verlag Berlin Heidelberg, 1986. XIII, 362 p. DOI: https://doi.org/10.1007/978-3-642-61633-4 .
Granovsky V. L. Electric Current in a Gas. Steady-State Current. Moskva: Nauka, 1971. 543 p. (Rus)
Raether H. Electron Avalanches and Breakdown in Gases. London: Butterworths, 1964. 191 p.
Lozansky E.D. and Firsov O.B. The Theory of the Spark. Moskva: Atomizdat, 1975. 272 p. (Rus).
Bereka V.O., Bozhko I.V., Karlov O.M., Kondratenko I.P. Coordination of parameters of the power source and the working chamber for water treatment with pulse barrier discharge. Tekhnichna Elektrodynamika. 2023. No 4. Pp. 81-89. DOI: https://doi.org/10.15407/techned2023.04.081. (Ukr).
Bereka V.O., Vasetsky Yu.M., Kondratenko I.P. The influence of the connecting high-voltage cable to the currents and voltages in device of pulsed dielectric barrier discharge. Tekhnichna Elektrodynamika. 2023. No 4. Pp. 81-89. DOI: https://doi.org/10.15407/techned2024.04.016. (Ukr).
Atomic and Molecular Processes. Editor: D.R. Bates. Academic Press, 1962. 904 p.
Razevig D.V. High Voltage Engineering. Khanna Publishers, 2011. 726 p.
Teich T.H. Emission gasionisierender Strahlung aus Elektronenlawinen. I. Meflanordnung und MeBver-fahren. Messungen in Sauerstoff. Zeitschrift Fur Physik. 1967. Bd 199. H. 4. Pp. 378-394. DOI: https://doi.org/10.1007/bf01332287.
Teich T.H. Emission gasionisierender Strahlung aus Elektronenlawinen. II. Messungen in Oz--He-Gemischen, D~impfen, CO2 und Luft; Datenzusammenstellung. Zeitschrift Fur Physik. 1967. Bd 199. H. 4. Pp. 395-410. DOI: https://doi.org/10.1007/BF01332288.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Array